P-Rb (Phosphorus-Rubidium) System

James M. Sangster

Equilibrium Diagram

There are no liquidus or solubility data available for this system [2001Bor]. A large number of P-Rb compounds has been prepared and identified. Phosphorus forms many polyatomic groups (rings and cages), and Baudler [1982Bau, 1987Bau] has pointed out the analogies between phosphorus and carbon chemistry.

The preparation and structure of phosphorus compounds with alkali metals were reviewed [1958Waz, 1973Sch, 1977Sch, 1981Sch, 1983Sch1, 1983Sch2]; a later review [1988Sch] is both more detailed and more extensive.

In early work, the reported stoichiometry of some compounds was confused. This was because elemental compositions were not easily distinguished by analytical techniques of the time.

It is appropriate here to distinguish between compounds isolated and characterized as solids and those prepared only in solution or those studied only by theoretical calculations. Unless otherwise noted, red phosphorus was used in preparing P-Rb compounds. Most P-Rb compounds decompose before melting.

Compounds Isolated as Solids

 Rb_4P_6 (60.0 at.% P) is prepared by reaction of the elements [1974Sch, 1987Sch, 2005Kra]. It was characterized by XRD [1974Sch, 1987Sch]. Infrared spectra and ³¹P-NMR spectra (in glyme and ethylenediamine solution) were reported [1987Sch].

 Rb_3P_7 (70.0 at.% P) in early work was known as Rb_2P_5 (71.4 at.% P). The misidentification was pointed out later [1983Sch1]. Rb_3P_7 (reported as " Rb_2P_5 ") was prepared [1912Hac] from the elements. Rb_3P_7 was prepared as the ammoniate and as an ether-solvated ammoniate in liquid ammonia [2005Kra]. It undergoes a first-order crystalline to plastic-crystalline transition $\alpha Rb_3P_7 \rightarrow \beta Rb_3P_7$ at 207 °C [1985Ten]. The melting point was given as 981 °C [1985Ten]. Both forms have been characterized by XRD [1983Hon, 1985Hon, 1988Sch].

Rb₃P₁₁ (78.6 at.% P) is prepared by reaction of the elements [1991Sch] in stoichiometric amounts. The room temperature crystalline form (α Rb₃P₁₁) transforms to a plastic-crystalline form (β Rb₃P₁₁) in a first-order process at 342 °C [1991Sch]. Both forms were characterized by XRD [1983Sch1, 1991Sch]. Raman spectra of α Rb₃P₁₁ in ethylenediamine solution were reported, as well as its infrared spectrum [1991Sch].

RbP₇ (87.5 at.% P) was prepared from the elements [1977Sch] and was characterized by XRD [1988Sch].

 $RbP_{10.3}$ (91.1 at.% P), prepared by direct reaction of the elements, was described by [1988Sch] in preliminary work. The structure, from XRD data, could not be completely elucidated.

 RbP_{11} (91.7 at.% P) was prepared by reaction of the elements (P:Rb = 9:1 or 15:1) [1982Kos]. It was characterized by XRD [1982Kos]. The overall composition of this compound is very close to that of $RbP_{10.3}$, but [1988Sch] considers them as two distinct compounds.

 RbP_{15} (93.8 at.% P) is a crystalline compound that can be prepared from the elements in a solid state reaction [1977Sch, 1985Ole]. It was characterized by XRD [1985Ole]. Its Raman and photoluminescence spectra were also reported [1985Ole].

Other Compounds

 Rb_3P (25.0 at.% P). There is no report of the preparation of this compound. Its fractional ionic character was calculated by two methods [1990Sha], results of which were 0.96 and 0.74. The presence of solvated Rb_3P was inferred [1987Hon, 1987Sch] from the disproportionation of Rb_4P_6 in ethylenediamine solution (³¹P-NMR measurements).

Crystal Structures and Lattice Parameters

Crystal structures and lattice parameters of rubidium phosphides are summarized in Table 1 and 2, respectively. The structural chemistry of these compounds is complex because P can form polyanions of many different configurations [1977Sch, 1983Sch1, 1988Sch].

In Rb₄P₆, there are isolated planar parallel P₆⁴⁻ rings. Each P atom is surrounded trigonal-prismatically by six Rb⁺ ions [1974Sch, 1977Sch, 1987Sch]. Alternatively, the structure may be envisioned as a defect-structure derivative of the Al₄B₈ (AlB₂) type: Rb₄P₆ \square_2 . In this case, two P sites remain vacant in an ordered way and leave isolated planar P₆ rings [1988Sch]. This scheme is explained more fully in [1983Nes].

Rb₃P₇. The structure of the room temperature solid (α-form) is tetragonal [1988Sch], while the high-temperature solid (β-form) is fcc [1983Hon, 1985Hon]. In both forms, there are P₇³⁻ cage groups (formally analogous to nortricyclene in carbon chemistry) [1983Hon, 1985Hon]. In the low-temperature form, the P₇³⁻ cages are uniformly oriented, whereas in the high-temperature form this is not so. The β-form is of the Li₃Bi type, where the P₇³⁻ anions occupy the Bi³⁻ sites.

Table 1 P-Rb crystal structure data

Phase	Composition, at.% Rb	Pearson symbol	Space group	Strukturbericht designation	Prototype	Temperature, °C	Reference
P (black)	0	<i>oC</i> 8 (a)	Cmca				[Pearson2]
P (white)	0	c**					[Pearson2]
P (red)	0	<i>c</i> *66					[Pearson2]
RbP ₁₅	6.3	aP32			KP15	25	[1985Ole]
RbP ₁₁	8.3	mP48	(b)		RbP ₁₁	25	[1988Sch]
RbP _{10.3}	8.9	<i>tP</i> 1488			KP _{10.3}	25	[1988Sch]
RbP ₇	12.5	oP32			CsP ₇	25	[1988Sch]
αRb_3P_{11}	21.4	oP80	Pnab		αNa_3P_{11}	25	[1988Sch]
βRb_3P_{11}	21.4	cF56	$Fm\overline{3}m$		βCs_3P_{11}	>342	[1983Sch1]
αRb_3P_7	30.0	<i>tP</i> 40			αCs_3P_7	25	[1988Sch]
βRb ₃ P ₇	30.0	cF40	$Fm\overline{3}m$		βRb_3P_7	>207	[1983Sch1]
Rb ₄ P ₆	40.0	oF40	Fmmm		Rb ₄ P ₆	25	[1974Sch]
Rb	100	cI2	Im3m	A2	W	25	[King1]

(a) P exists in rhombohedral and cubic forms at high pressures and room temperature

(b) [1982Kos] reported the space group as P2/m, P2 or Pm

Table 2 P-Rb lattice parameter data

Phase	Composition, at.% Rb	Lattice parameters, nm							
		а	b	с	α	β	γ	Temperature, °C	Reference
P (black)	0	0.33136	1.0478	0.43763				25	[Pearson2]
P (white)	0	0.718						25	[Pearson2]
P (red)	0	1.131						25	[Pearson2]
RbP ₁₅	6.3	1.220	0.906	0.721	116.6°	101.4°	82.4°	20	[1985Ole]
RbP ₁₁	8.3	1.8013	0.9670	0.6511		95.56°		25	[1982Kos]
αRb_3P_{11}	21.4	1.0512	1.4555	1.0754				25	[1991Sch]
βRb_3P_{11}	21.4	1.1592						20(a)	[1983Sch1]
		1.1497						-180(a)	[1991Sch]
βRb ₃ P ₇	30.0	1.0818						20(a)	[1983Hon]
Rb ₄ P ₆	40.0	0.9641	1.4629	0.9010				25	[1974Sch]
Rb	100	0.5703						25	[King1]
(a) Metastał	bly quenched from high temp	erature							

Rb₃P₁₁ at room temperature is orthorhombic (α -form), whereas the high-temperature form is cubic [1991Sch]. Both forms contain P₁₁³⁻ cages, highly internally connected [1973Wic, 1991Sch]. The corresponding carbon cage compound was given the trivial name "ufosan" [1973Wic, 1988Sch].

RbP₇ is orthorhombic, isostructural with CsP₇ (Z = 4) [1988Sch]. According to [1977Sch, 1988Sch], the structure contains P₇⁻ cages in a linear chain.

 $RbP_{10,3}$ was described [1988Sch] as having a complicated twofold tubular superstructure, possibly including P_{35}^{-} units of pentagonal cross-section [1977Sch].

In RbP₁₁ there are P_7^- and P_{15}^- groups forming infinite tubes in 1:1 ratio [1983Sch2]. The Rb⁺ ions are situated between the infinite tubes [1977Sch].

 RbP_{15} contains infinite P_{15}^{-} tubes of pentagonal crosssection, resulting from a polymerization of alternating P_{7}^{-} and P_8^0 units [1967Sch, 1981Sch]. The Rb⁺ ions are situated between the tubes, and each Rb⁺ ion has six nearest neighbors.

Thermodynamics

Experimental data are summarized in Table 3. Although the compound Rb₃P has not been reported, thermodynamic data were estimated [1980Suu]: $\Delta_{\rm f}H^0{}_{298} = 189$ kJ mol⁻¹ and $S^0{}_{298} = 43.9$ J mol⁻¹ K ⁻¹. The heat capacity of Rb₃P₇ was measured by differential scanning calorimetry (DSC) [1985Ten] in the range 120-770 K. From these data the solid transition temperature and enthalpy of transition were deduced. The melting temperature and enthalpy of fusion were determined by differential thermal analysis. The vapor

Compound	$\Delta_{\rm f} H^0_{298}$, kJ mol ⁻¹	$\Delta_{\rm f} G^0_{298}$, kJ mol ⁻¹	S^{0}_{298} , J mol ⁻¹ K ⁻¹	$\Delta_{\rm trs} H$, kJ mol ⁻¹	$\Delta_{\rm fus}H$, kJ mol ⁻¹
aRb ₃ P ₇	-124(a)		681(a)	5.8(b)	
βRb_3P_7	-114(a)		612(a)		7(b)
RbP ₁₅	-113(c)	-238(c)	418(e)		
	-110(d)	-237(d)			
(a) [1986San]					
(b) [1985Ten] (he	eating mode)				
(c) [1987San] (21	nd law)				
(d) [1987San] (3)	rd law)				
(e) [1988Sch]					

Table 3 Experimental thermodynamic properties of Rb phosphides

pressure of this compound was measured by Knudsen effusion/mass spectrometry [1986San] in the range 853-970 K. From these data (second law) the thermodynamic properties $\Delta_{\rm f} H^0_{298}$, $\Delta_{\rm f} G^0_{298}$ and S^0_{298} of both α - and β -forms were deduced.

The vapor pressure of RbP₁₅ was measured by Knudsen effusion/mass spectrometry [1987San] in the range 472-555 K. From these data the formation properties $\Delta_{\rm f} H^0_{298}$ and $\Delta_{\rm f} G^0_{298}$ were deduced.

References

- **1912Hac:** L. Hackspill and R. Bossuet, Sur de nouveaux phosphures alcalins P_5M_2 (New Alkali Phosphides P_5M_2), *Compt. Rend. Hebd. Séances Acad. Sci.*, 1912, **154**, p 209-211, in French (Equi Diagram; Experimental)
- **1958Waz:** J.R. Van Wazer, Alkali Metal Phosphides, *Phosphorus and Its Compounds*, Vol 1 (Chemistry), Interscience, New York, 1958, p 133-144 (Equi Diagram, Crys Structure; Review)
- **1967Sch:** H.G. von Schnering and H. Schmidt, KP₁₅, ein neues Kaliumpolyphosphid (KP₁₅, a New Potassium Polyphosphide), *Angew. Chem.*, **79**(7), p. 323, in German; TR: *Angew. Chem. Int. Ed. Engl.*, 1967, **6**(4), p 356 (Equi Diagram, Crys Structure; Experimental)
- 1973Sch: H.G. von Schnering, Strukturelemente in Polyphosphiden (Structural Elements in Polyphosphides), *Nachr. Chem. Tech.*, 1973, 21(19), p 440-442, in German (Crys Structure; Review)
- **1973Wic:** W. Wichelhaus and H.G. von Schnering, Na₃P₁₁, ein Phosphid mit isolierten P₁₁³⁻ -Gruppen (Na₃P₁₁, a Phosphide with Isolated P₁₁³⁻ Groups), *Naturwissenschaften*, 1973, **60**(2), p 104, in German (Crys Structure; Experimental)
- **1974Sch:** W. Schmettow, A. Lipka, and H.G. von Schnering, Rb₄P₆, ein Phosphid mit planaren Phosphor-Sechsringen (Rb₄P₆, a Phosphide with Planar Six-Membered Phosphorus Rings), *Angew. Chem.*, 1974, **86**(10), p 379-380, in German; TR: *Angew. Chem. Int. Ed. Engl.*, 1974, **13**(5), p 345 (Crys Structure; Experimental)
- 1977Sch: H.G. von Schnering, Catenation of Phosphorus Atoms, Chap. 14, *Homoatomic Rings, Chains and Macromolecules of Main Group Elements*, A.L. Rheingold, Ed., Elsevier, Amsterdam, 1977 (Equi Diagram, Crys Structure; Review)
- 1980Suu: N.T. Suu and D.U. Van, Thermodynamic Properties and Structure of A¹B^V Compounds, *Tap Chi Hoa Hoc*, 1980, 18(1), p 16-18, in Vietnamese (Thermo; Theory)

- 1981Sch: H.G. von Schnering, Homoatomic Bonding of Main Group Elements, Angew. Chem., 1981, 93(1), p 44-63, in German; TR: Angew. Chem. Int. Ed. Engl., 1981, 20(1), p 33-51 (Crys Structure; Review)
- 1982Bau: M. Baudler, Ketten- und ringförmige Phosphorverbindungen - Analogien zwischen Phosphor- und Kohlenstoffchemie (Chain and Ring Phosphorus Compounds—Analogies Between Phosphorus and Carbon Chemistry), *Angew. Chem.*, 1982, 94(7), p 520-539, in German; TR: *Angew. Chem. Int. Ed. Engl.*, 1982, 21, p 492-512 (Crys Structure; Review)
- 1982Kos: V.I. Kosyakov, O.G. Potapova, V.P. Doronina, T.M. Polyanskaya, and E.N. Cherevko, Synthesis and X-ray Diffraction Study of Rubidium Phosphide (RbP₁₁), *Izv.Sibirsk. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk*, 1982, (1), p 93-97, in Russian (Equi Diagram, Crys Structure; Experimental)
- **1983Hon:** W. Hönle, V. Manriquez, T. Meyer, and H.G. von Schnering, Kristalline und plastisch-kristalline Phasen der Trialkalimetallheptaphosphide (Crystalline and Plastic-Crystalline Phases of the Trialkali Metal Heptaphosphides), *Z. Kristallogr.*, 1983, **162**(1-4), p 104-106, in German (Crys Structure; Experimental)
- **1983Nes:** R. Nesper and H.G. von Schnering, Strukturen mit Polyanionen als Defektvarianten allgemeiner Strukturtypen (Structures Containing Polyanions—Defectvariants of Common Structure Types), *TMPM, Tschermaks Mineral. Petrograph. Mitteil.*, 1983, **32**(2-3), p 195-208, in German (Crys Structure; Theory)
- **1983Sch1:** H.G. von Schnering, Rings, Clusters and Polymers of the Main Group Elements, *ACS Symp. Ser.*, 1983, (232), p 69-80 (Crys Structure; Review)
- 1983Sch2: H.G. von Schnering, W. Hönle, V. Manriquez, T. Meyer, C. Mensing, and W. Giering, Plastic Phases with Alkali Metal Pnictides, *Stud. Inorg. Chem.*, 1983, **3**, p 765-768 (Equi Diagram, Crys Structure; Review) *Electrochem. Soc.*, 1985, 132(11), p 2771-2774 (Equi Diagram, Thermo; Experimental)
- **1985Hon:** W. Hönle, T. Meyer, Ch. Mensing, and H.G. von Schnering, Röntgenstrukturuntersuchungen an plastisch-kristallinem Rb₃P₇, Cs₃P₁₁ und Cs₃(P₇)_{0.67}(P₁₁)_{0.33} (X-ray Studies on Plastic-Crystalline Rb₃P₇, Cs₃P₁₁ and Cs₃(P₇)_{0.67}(P₁₁)_{0.33}), *Z. Kristallogr.*, 1985, **170**(1-4), p 78-79, in German (Crys Structure; Experimental)
- **1985Ole:** D.J. Olego, Vibrational and Electronic Properties of MP₁₅ Polyphosphides: Crystalline RbP₁₅, KP₁₅ and NaP₁₅, *Phys. Rev. B*, 1985, **31**(4), p 2230-2239 (Crys Structure; Experimental)
- **1985Ten:** K. Tentschev, E. Gmelin, and W. Hönle, Phase Transitions Crystalline to Plastic-Crystalline and the Specific Heat of

Section II: Phase Diagram Evaluations

M₃P₇ Compounds (M = Li, Na, K, Rb, Cs), *Thermochim. Acta*, 1985, **85**, p 151-154 (Thermo; Experimental)

- **1986San:** R.P. Santandrea, C. Mensing, and H.G. von Schnering, The Sublimation and Thermodynamic Properties of the Alkali Metal Phosphides Na₃P₇(s), K₃P₇(s), Rb₃P₇(s) and Cs₃P₇(s), *Thermochim. Acta*, 1986, **98**, p 301-311 (Thermo; Experimental)
- **1987Bau:** M. Baudler, Polyphosphorverbindungen neue Ergebnisse und Perspektiven (Polyphosphorus Compounds— New Results and Perspectives), *Angew. Chem.*, 1987, **99**(5), p 429-451, in German (Equi Diagram; Review)
- **1987Hon:** W. Hönle and H.G. von Schnering, Alkali Metal Hexaphosphenes(4) as Sources for the Polycyclic Compounds P₇R₃, Cs₃P₁₁ and Cs₄P₁₄, *Phosphorus and Sulfur*, 1987, **30**(3-4), p 775 (Equi Diagram; Experimental)
- **1987San:** R.P. Santandrea, C. Mensing, and H.G. von Schnering, The Thermal Decomposition and Thermodynamic Properties of the Alkali Metal Phosphides LiP₁₅(s), NaP₁₅(s), KP₁₅(s), RbP₁₅(s) and CsP₁₅(s), *Thermochim. Acta*, 1987, **117**, p 261-270 (Thero; Experimental)
- **1987Sch:** H.G. von Schnering, T. Meyer, W. Hönle, W. Schmettow, U. Hinze, W. Bachofer, and G. Kliche, Tetrarubidiumhexaphosphid und Tetracesiumhexaphosphid: Darstellung, Struktur und Eigeneschaften von Rb₄P₆ und Cs₄P₆ (Tetrarubidium Hexaphosphide and Tetracesium Hexaphosphide: Preparation, Structure and Properties of Rb₄P₆ and Cs₄P₆), Z. Anorg. Allg.

Chem., 1987, **553**, p 261-279, in German (Equi Diagram, Crys Structure; Experimental)

- *1988Sch: H.G. von Schnering and W. Hönle, Bridging Chasms with Polyphosphides, *Chem. Rev.*, 1988, 88(1), p 243-273 (Equi Diagram, Crys Structure, Thermo; Review)
- 1990Sha: S.B. Sharma, P. Paliwal, and M. Kumar, Electronic Dielectric Constant, Energy Gap and Fractional Ionic Character of Polyatomic Binary Compounds, *J. Phys. Chem. Solids*, 1990, 51(1), p 35-39 (Crys Structure; Theory)
- **1991Sch:** H.G. von Schnering, M. Somer, G. Kliche, W. Hönle, T. Meyer, J. Wolf, L. Ohse, and P.B. Kempa, Darstellung, Eigenschaften und Schwingungsspektra der Käfiganionen P₁₁³⁻ und As₁₁³⁻ (Preparation, Properties and Vibrational Spectra of the Cage Anions P₁₁³⁻ and As₁₁³⁻), *Z. Anorg. Allg. Chem.*, 1991, **601**, p 13-30, in German (Equi Diagram, Crys Structure; Experimental)
- 2001Bor: H.U. Borgstedt and C. Guminski, IUPAC-NIST Solubility Data Series. 75. Nonmetals in Liquid Alkali Metals, *J. Phys. Chem. Ref. Data*, 2001, 30(4), p 835-1158 (Equi Diagram; Review)
- **2005Kra:** F. Kraus and N. Korber, The Chemical Bond in Polyphosphides: Crystal; Structures, the Electron Localization Function and a New View of Aromaticity in P_4^{2-} and P_5^{-} , *Chem. Eur. J.*, 2005, **11**(20), p 5945-5959 (Equi Diagram, Crys Structure; Experimental)

P-Rb evaluation contributed by J. Sangster, Sangster Research Laboratories, P.O. Box 49562, 5122 Cotes des Neiges, Montreal, QC H3T 2A5, Canada. Literature search through 2008.